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Stability Criteria for Phase-Locked Oscillators

G. H. BERTIL HANSSON AND K. INGEMAR LUNDSTROM

Abstract-Stability criteria for negative conductance oscillators

or amplifiers are derived in terms of the total circuit admittance. A
figure of merit for phase locking at small injected powers is derived.
The influence of large injected signals is studied. The conclusions

drawn from the calculations are in good qualitative agreement with
ezperirnental observations on phase-locked IMPATT-diode oscillators.

I. INTRODUCTION

P

HASE-LOCKED oscillators have been shown a

Iar;ge interest in recent years due to the possibility

of decreasing the FM noise of solid-state oscillators

by injection locking. The purpose of this paper is to

derive some general stability criteria for amplifiers and

phase-locked oscillators whose active element can be

described as a negative conductance (or negative resis-

tance). The analysis is similar to that used by Kuro-

kawa [1] and Brackett [2], who considered a general

circuit in contrast to Adler [3], who studied a simple

single resonant circuit. The stability criteria for a phase-

Iocked oscillator are derived in a different way and cast

in a different form that we find convenient to use. The

main difference is, however, that we use a general series

expansion for the negative conductance in contrast with

Kurokawa who used a first-order approximation [1, eq.

(11) ]. fine of the results of our theory is the introduction

of two border lines for stable locking [4], which are

called the boundary and locus curve, respectively, using

a notation introduced by Golay [5], who studied the

stability of a regenerative oscillator. It is shown by

experiments that these two curves have practical im-

plications. By calculating the boundary and locus
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Fig. 1. (a) Equivalent circuit. (b) Circulator coupled
negative conductance element.

curves, hysteresis and jumps in output power can be

predicted.

The theory is applied to a simple cubic nonlinearity,

with both a nonlinear conductance and susceptance. It

is shown that the nonlinear susceptance introduces

asymmetrical locking properties at large injected powers.

II. CIRCUIT EQUATIONS

The starting point for our calculations is the equiv-

alent circuit shown in Fig. 1(a). In this circuit I. is a

current of frequency wi, which depends on the injected

power Pin. Ye is the admittance of the passive circuit as

seen from the active element. The active element is

described by a voltage-dependent susceptance

Yd = G@, o)) + jBrs(V, OJ) (1)

where V is the amplitude of the RF voltage across the

active element. Y, and 1. depend on the actual circuit.

A circulator coupled negative conductance element,

shown in Fig. 1(b), where the coupling circuit is de-



642 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, OCTOBER 1972

scribed by its voltage–current transmission matrix

[0‘[: m
has

AYC+C
Y. =

BYC+D

and

(2)

(3)

(4)

.IC= (2 YC/(B Y. +D) ) VI+, where VI+ is the incident

voltage wave as shown in Fig. 1 (b). The input power

l’i. is \ ~1+ I 2 Gc/2. Y.= G. +jBc is the characteristic

admittance of the circulator.

If we introduce

I?(v, (J) = Ye(a) + Ydw, a) (5)

we find that free-running oscillations require, with

YGG+jB,

G(VO, @O)

and

B(VO, COO)

which defines the free-running

tion frequency tie. Generally,

=0 (6)

=0 (7)

amplitude VO and oscilla-

we have

~#i~-@) = Y(J7, ~) J7@ot (8)

where
I. s Ie–$%

was introduced. 1 is the amplitude of 16 and + the phase

difference between 1, and the RF voltage ~ across the

active element. w is the instantaneous frequency of the

RF voltage across the active element. In a stable locked

state (or for a stable amplifier) u = co~ and @ is inde-

pendent of time. In this case we find from (8) by split-

ting it into real and imaginary parts

1 cos @ = G(V, CO,)V (9)

–1 sin@ = B(V, mi)V. (lo)

Squaring and adding (9) and (10) yields

12 = (G2 + B2)V2. (11)

Equations (9)–(1 1) thus describe the locked state and

from them V(1, co~) and 4(1, ~;) may be computed. The

question is, however, does a certain operating point

represent a stable locked state?

III. STABILITY CRITERIA

An unlocked condition can be characterized by an

RF voltage V of frequency cui with a time varying am-

plitude and phase. If (1/V) (d V/dt) and t@/dt are small

quantities compared to COGwe may replace Y( V, co) by

[1].

Y(v, cd) = (Y(v, .i)+: ;–j;: ) (12)

where r3 Y/&o is to be taken in the point ( V, COi). Equa-

tion (12) means that we have replaced an RF voltage

of the form V(t)ej@~+@f~J) by V(t) e~t”t+4’J, where

~ =o; + (d@/dt)]~,—j(l/ V) (d V/dt) I P and where t’ is a

given time and ~’ a fixed phase angle. u is the instan-

taneous frequency, and if co–co~<<ai, a series expansion

of Y around (V, ui) may be made as indicated in (12).

A more rigorous derivation of (12) is given in [1]. If we

use this Y in (8) and split (8) into real and imaginary

parts we find

where the derivatives with respect to frequency are

taken in (V, co;). For a stable locked oscillator, of course

(dqi/dt) = (d V/iIt) = O and (13) and (14) reduce to (9) and

(10). To determine if V and ~, derived from (9) and

(10), represent a stable locking point we perturb V’ and

@ by small amounts A ~ and A@ and see if they will grow

or decay with time. Replacing 8/dt by s we find from

(13) and (14), to first order in A V and Ad:

+ : VsAC#I (15)

[ 1–A@cos@= B(V, ai)+~V–:s AV

+ -!2 J’sA@. (16)
dw

Using (9) and (10) we find

The stability of the locked oscillator is determined by

the zeros of the determinant to (17) and (18). Stability

requires that all roots of s lie in the left-hand part of

the complex plane, which requires

and

G(G+~V)+B(B+:V)>O. (20)

The curves given by equal signs in (19) and (20) are

named boundary curve and locus ctwve, respective y.
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Equation (20) is equivalent to (t112/d V)>0, which is

easily seen from (13), which means that for a stable

locked oscillator we require the RF voltage across the

active element to increase if the injected power

(P,~=12) increases. It may be noted that for a free-

running oscillator the stability criterion (20) disap-

pears and (19) reduces to

dG dB 8B dG
—.— —— — >0.
L3v Ekd C9v EkJ

The expression on the left-hand side is a measure of the

dynamic stability of the free-running oscillator. The

normalized dynamic stability factor

dG aB aB aG
——

av au av au
s=—

/((3+( 3)((32+(37 ‘2’)

has a maximum value of 1.0, which would characterize

an oscillator dynamically stabilized in an optimum

way. The normalized dynamic stability is a measure of

the relative stability that appears in calculations of the

oscillator noise and AM to FM conversion [1].

For small injected power and small frequency devia-

tions, I cd–cm], the following approximation can be

used

G+jl?=:; (V-VO)++ tiO)

++V-VO)++ -O) (“)

where the derivatives are taken in the point ( VO, uO).

From (20) we get

{ }
:( V.- VO)+:(U, –UO);Vo

{
+ :-(V–VO)++WO)

}
#vo=o (23)

where second-order terms in ( Ir— Vo) and (tii —UO)

have been neglected. This gives an expression for the

voltage on the locus curve

dG (2G 8B 8B
——+–——–

v–vcl=–

Introducing this in

av b ‘ av am

W+(%) “ ‘“’-”o) ’24)

(11) gives

Since the locus curve defines the stability region of the

w
;; A STABLE REGION

1.0.

0.5-
1 BOUNDARY CURVE A P,n=OOl

E

B P,n=0.02
LC c P,n=oos

o P,n.o 10

0.0
0:95 1.00 I.bs %0

Fig. 2. Normalized voltage versus frequency for different input
powers. The coupling circuit has L =0.1 and C= 10.0. Further-
more, G.= 1.0, Y~= –2.0 +Gz W(CZ =0). ~in is the @c@
power normalized by the free-running output power, f’” = (G. Vo2)/2.

locked oscillator (at small injected powers) (25) gives

the maximum locking range (ai —tio)max for a certain

injected power. Replacing I and V. by input power p,~

and free-running output power Po we get

where

8G dB 8B r3G
—— ——

~o av au av aw

This result should be compared with Adler’s [3]. Equa-

tion (26) has the same form as Adler’s but the “normal”

Q~~t= (coo/zGc) (a~/a@) = (ao,/G.) has to be replaced by

(27). Equation (19) in [1] can be cast in the same form

as (26) and (27).

Although we have discussed a phase-locked oscillator,

the derived stability criteria are of course also applicable

to a negative conductance amplifier. We should remem-

ber, however, that the boundary curve, defined by (19),

is accurate only as long as (12) can be used.

IV. EXAMPLE

The theory has been applied to a simple cubic non-

linearity provided with different coupling circuits [4].

By using the stability criteria a number of experi-

mentally found phenomena could be explained, e.g.,

hysteresis and jumps in output power and unsym-

metrical locking ranges [4]. As an example we will

study a parallel tuned circuit. The active element is

described by the following admittance

Yd = Go + G,V2 + juC, + j.X,V2. (28)

Fig. 2 shows V2/ J’02 versus ti/uO for different input
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o.oJ,
0<90 0:95 I&l 1,05 7.0

(a)

10-3J

10 20 30 P.-J P,n

dB
(b)

(c)

Fig. 3. (a) Locus and boundary curves. (b) Locking bandwidth
versus locking gain. (c) Modulation frequency versus frequency
on the locus and boundary curves. G.= 1.0, L=O.1, Go= —2.O;
A: B/Gz=O and C=1O.O; B: Bz/Gz=l.O and C=9.O; c: BJGz
=2..5 and C=7.5.

powers. V, and UO are given by (6) and (7). The

parameter values chosen are shown in the figure cap-

tions. The region of stable locking as calculated from the

stability criteria is shown.

Pi. is the injected power normalized by the free-

running output power Po = (Gc V02) /2, and since we have

plotted V2/ V02 the value of Ga is arbitrary and incor-

porated in Vo2.

In Fig. 3(a) locus and boundary curves are shown for

an active element with the same coupling circuit as in

Fig. 2, but with different values of the voltage-de-

pendent capacitance. The circuit is tuned to give a

b fp

MHz

+10.

o

-1o-

1“’”’
Fig. 4. Experimental values of modulation frequency versus fre-

quency on the border of the stable region. ~0 = 9975 MHz.

constant uO. The slope of the locus curve at UO is given

by (24). The slope has a maximum for B2 = Gz. Fig.

3(a) shows that unsymmetrical locking properties are

obtained due to the voltage-dependent susceptance.

This is also shown in Fig. 3(b), which is the common

locking bandwidth versus gain diagram. The dashed

lines are given by (26) with Q,., computed from (27).

This expression is, however, only valid at small Pi.

(large ~./Pia). At larger Pin the asymmetry of the

locus curve makes the locking bandwidth larger for

positive frequency deviations (in this example).

By actually calculating the roots of s from the de-

terminental equation on the border of the stable region

some information may be gained concerning the type of

instability which is the most important at different

parts of the border. Close to locking the output is a

carrier with amplitude and phase modulation. In Fig.

3(c) the modulation frequency AUP is shown. The

modulation frequency AWP is the difference between

the frequency of the injected signal U; and the fre-

quency of the oscillator at the border of stable locking.

On the locus curve the modulation frequency is zero

and on the boundary curve the modulation frequency

goes toward the frequency difference ox —UO. This

means that when the stable locking range is determined

by the locus curve we have complete frequency pulling,

i.e., Au, = O. When the stable locking region is de-

termined by the boundary curve, the frequency of the

oscillator is only partly pulled (or in some cases pushed

from) the injected signal at the border of locking. For

injected signals far away from the free-running fre-

quency cuo we have neither frequency pushing nor pull-

ing, which means that the modulation frequency AUP

equals @i —@O.

This is in good agreement qualitatively with experi-

ments done on an rMPATT-diode oscillator with fo = 997.5
MHz and P.= 60 mW and also with conclusions made

using a different method of analyzing nonlinear micro-

wave circuits [6].

The experimental results are shown in Fig. 4. The

crosses in Fig. 4 represent the limit of the modulation

frequency obtained at a certain injected frequency,

just at the border of locking. They were obtained by
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choosing a frequency fi and increasing Pi until locking

occurred. Points lying on the fi axis represent the

modulation frequency obtained when the locking range

is determined by the locus curve. The other points rep-

resent the modulation frequency limit when the locking

range is determined by the boundary curve. For some

injected frequencies ~i <jO) there are two crosses at the

same frequency. The reason for this may be seen in

Fig. 3(a). We look at case B with Ui/W = 0.95 as an

example. Increasing the input power from zero we find

that locking occurs at the boundary curve and hence

gives a cross close to~; –~o in Fig. 4. If the input power

increased further (which for a stable locked state also

means increasing the voltage amplitude ~) we reach

the 10CLLScurve B and a jump in V (and output power)

occurs. The modulation frequency just before the jump

is then zero. Furthermore, this example shows the possi-

bility of hysteresis and jumps in the output power of a

locked oscillator.

V. CONCLUSIONS

Some general stability criteria have been derived

that seem to be useful in connection with practical

amplifiers and oscillators. The results obtained are in

good agreement qualitatively with experimental results.

Furthermore, a new locking figure of merit 1 /Q8.t was

derived for small injected powers. It is seen from this

figure of merit, (27), that introducing a voltage-de-

pendent capacitance may increase the locking band-

width. However, this also decreases the dynamic

stability of the oscillator. To increase the locking band-

width without decreasing the dynamic stability one has

to decrease the absolute value of the frequency deriva-

tive of the admittance. Furthermore, the modulation

of the oscillator at the border to phase locking was

studied. The difference between locking at the boundary

and locus curve, respectively, was pointed out. The effect

of large injected power was shown to create unsym-

metric locking properties if a nonlinear susceptance is

present in the circuit.
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A Wide-Band Gunn-Effect CW Waveguide Amplifier

AMADOU S~NE AND FRED J. ROSENBAUM

Abstnzcf-Broad-band CW anmlification with Gunn diodes in

waveguide circuits has been obtained, with power gains typicafly
between 10 and 15 dB and haff-power bandwidths of more than 1
GHz. It is found that ampfifier performance can be modeled with

fair accuracy using a rough characterization for the diode parameters.

INTRODUCTION

A

L~HOUGH Gunn diodes have been used primarily

in oscillator applications, their negative resistance

properties can also be used to obtain reflection

gain [1 ]– [8 ]. Three amplifying modes have been ob-
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served that depend on the product of doping density n

and the length L of the GaAs chip.

McCumber and Chynoweth [9] have shown the-

oretically that when the nL product is less than 5 X 1011

cm-2 a Gunn diode exhibits a negative resistance

around the transit-time frequency and its harmonics

[1]. Such diodes are usually referred to as being sub-

critically doped, since when biased above threshold they

do not enter into transit-time (Gunn) oscillations. The

main disadvantage of subcritically doped amplifiers is

the high ratio of capacitance-to-negative conductance

that allows circuit matching for high gain only in a

narrow frequency band.

When the nL product is above 5 X 1011 cm-z the

device is supercritically doped. If the bias voltage is

just above threshold, high field domains nucleate near

the cathode boundary and the diode may oscillate in the


