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Stability Criteria for Phase-Locked Oscillators

G. H. BERTIL HANSSON axp K. INGEMAR LUNDSTROM

Abstract—Stability criteria for negative conductance oscillators
or amplifiers are derived in terms of the total circuit admittance. A
figure of merit for phase locking at small injected powers is derived.
The influence of large injected signals is studied. The conclusions
drawn from the calculations are in good qualitative agreement with
experimental observations on phase-locked IMPATT-diode oscillators.

I. INTRODUCTION

HASE-LOCKED oscillators have been shown a
Plarge interest in recent years due to the possibility

of decreasing the FM noise of solid-state oscillators
by injection locking. The purpose of this paper is to
derive some general stability criteria for amplifiers and
phase-locked oscillators whose active element can be
described as a negative conductance (or negative resis-
tance). The analysis is similar to that used by Kuro-
kawa [1] and Brackett [2], who considered a general
circuit in contrast to Adler [3], who studied a simple
single resonant circuit. The stability criteria for a phase-
locked oscillator are derived in a different way and cast
in a different form that we find convenient to use. The
main difference is, however, that we use a general series
expansion for the negative conductance in contrast with
Kurokawa who used a first-order approximation [1, eq.
(11) ]. One of the results of our theory is the introduction
of two border lines for stable locking [4], which are
called the boundary and locus curve, respectively, using
a notation introduced by Golay [5], who studied the
stability of a regenerative oscillator. 1t is shown by
experiments that these two curves have practical im-
plications. By calculating the boundary and locus
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Fig. 1. (a) Equivalent circuit. (b) Circulator coupled
negative conductance element.

curves, hysteresis and jumps in output power can be
predicted.

The theory is applied to a simple cubic nonlinearity,
with both a nonlinear conductance and susceptance. It
is shown that the nonlinear susceptance introduces
asymetrical locking properties at large injected powers.

I1. Circuit EQUATIONS

The starting point for our calculations is the equiv-
alent circuit shown in Fig, 1(a). In this circuit I, is a
current of frequency w;, which depends on the injected
power P;,. ¥, is the admittance of the passive circuit as
seen from the active element. The active element is
described by a voltage-dependent susceptance

YVa= Gd(V7 w) +.7Bd(V7 w) (1)

where V is the amplitude of the RF voltage across the
active element. ¥, and I, depend on the actual circuit.
A circulator coupled negative conductance element,
shown in Fig. 1(b), where the coupling circuit is de-
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scribed by its voltage—current transmission matrix

[]-Le Bl @

has
AY,+ C
=40t C 0
BY,+ D
and
I,| =|——— 8 Pin/Ge. 4
l ‘ ‘BY —|—DI\/ / )

I,=02Y,/(BY,+D))Vi+, where V;+ is the incident
voltage wave as shown in Fig. 1(b). The input power
Py, is lV1+!2 G./2. Y,=G,+jB, is the characteristic
admittance of the circulator.

If we introduce

Y(V; “’) = Ye("-’) + Yd(Vv "") (5)

we find that free-running oscillations require, with
Y=G+jB,

G(Vo,wo) = 0 (6)

and
B(Vo, wo) = 0 (7)

which defines the free-running amplitude V, and oscilla-
tion frequency wo. Generally, we have

Ted@it=®) = V(V, w)Vek? (8)

where
I, = ITe

was introduced. [ is the amplitude of 7, and ¢ the phase
difference between I, and the RF voltage V across the
active element. w is the instantaneous frequency of the
RF voltage across the active element. In a stable locked
state (or for a stable amplifier) w=w; and ¢ is inde-
pendent of time. In this case we find from (8) by split-
ting it into real and imaginary parts

Tcosp =GV, w)V 9

—Ising = B(V, w)V. (10)
Squaring and adding (9) and (10) yields
I* = (G* 4 BY) V2 11)

Equations (9)—(11) thus describe the locked state and
from them V (7, w;) and ¢(I, w;) may be computed. The
question is, however, does a certain operating point
represent a stable locked state?

III. StaBiLITY CRITERIA

An unlocked condition can be characterized by an
RF voltage V of frequency w; with a time varying am-
plitude and phase. If (1/V)(@V/dt) and 0¢ /3¢t are small
quantities compared to w;, we may replace Y(V, w) by

[1].
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Y(V,w) = V(V + <8¢> Ly 12
V,0) ~ YV, 0 2o as) ap
where 8 Y /0w is to be taken in the point (V, w;). Equa-
tion (12) means that we have replaced an RF voltage
of the form V(Herwitte¢® by TV(f)eiwt+s)  where
w=w;+©0p/3t)| v —j(1/V)@V/3t)| v and where ¢’ is a
given time and ¢’ a fixed phase angle. w is the instan-
taneous frequency, and if w—w,;<w;, a series expansion
of ¥ around (V, w;) may be made as indicated in (12).
A more rigorous derivation of (12) is given in [1]. If we
use this ¥ in (8) and split (8) into real and imaginary
parts we find

Icos¢=|:G(V w)+_‘9£f9_?+9£ ! 6V:| (13)
dw 0f do V
—TIsin¢ I:B(V, w;) —I——E 09 06 1 (—91/—] Vo (14
w O ow V ¢

where the derivatives with respect to frequency are
taken in (V, w:). For a stable locked oscillator, of course
(0¢/dt) = (@ V/0t) =0 and (13) and (14) reduce to (9) and
(10). To determine if 7 and ¢, derived from (9) and
(10), represent a stable locking point we perturb 7 and
¢ by small amounts AV and A¢ and see if they will grow
or decay with time. Replacing 4/9¢ by s we find from
(13) and (14), to first order in AV and A¢:

A@I si —[G(V )+6GV+8B ]AV
[} smd;-—r ,,w, o a;—s

G
+ — VsAé

(15)
CO
aG
—A¢Icos¢=|:B(V w)—l——V——a—s:IAV
w
B
4+ —VsAgp.  (16)
ow
Using (9) and (10) we find
(G—l—aGV—l— aB>AV B G A 0o (7
v T ew)V ( sﬁ)"’" an
(B—{—BBV 6G>AV+<G+ 05 A 0 18
v )V SaZ) $=0. (%)

The stability of the locked oscillator is determined by
the zeros of the determinant to (17) and (18). Stability
requires that all roots of s lie in the left-hand part of
the complex plane, which requires

B oG G 4B dB oG
2{\G——B— ) +H{— — — —
dw Ow oV dw vV dw
oG 0B
G|G+—V)+B{B+—V)>0.
oV oV

The curves given by equal signs in (19) and (20) are
named boundary curve and locus curve, respectively.

>V>O (19)

and

(20)
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Equation (20) is equivalent to (812/3 V) >0, which is
easily seen from (13), which means that for a stable
locked oscillator we require the REF voltage across the
active element to increase if the injected power
(Pin~I% increases. It may be noted that for a free-
running oscillator the stability criterion (20) disap-
pears and (19) reduces to

G dB 0B G

The expression on the left-hand side is a measure of the
dynamic stability of the free-running oscillator. The
normalized dynamic stability factor

S= (21)
/([ 0G\? dB \? aG\? dB\?
V(G) GG +G))
v ov dw dw

has a maximum value of 1.0, which would characterize
an oscillator dynamically stabilized in an optimum
way. The normalized dynamic stability is a measure of
the relative stability that appears in calculations of the

oscillator noise and AM to FM conversion [1].
For small injected power and small frequency devia-

tions, |w.,—wo|, the following approximation can be
used

G+ 4B aG(V V)-I—aG( )
Ty VT ey T

+‘aB(V 4 _‘_.aB ) (22)
]GV n) jgg(wi—wo

where the derivatives are taken in the point (V,, wo).
From (20) we get
G

aG(V V)+6G( ,
{aV YT e w’—w")}ﬁ 0

+{aB<V v+ 22 )}aBV—o (23)
v VT e T 0

14

where second-order terms in (V—V,) and (w;—wo)
have been neglected. This gives an expression for the
voltage on the locus curve

oG aG
VvV dw
V—-—Vi= — . (wi_‘wo) (24)

() + )

Introducing this in (11) gives

oG 4B 3B 3G \?
. G229

0B 4B

AV dw AV dw
— = (w; — wp)2. (25)

Ve aG\: (9B \?
Gr) + )
v v

Since the locus curve defines the stability region of the
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STABLE REGION

LOCUS CURVE
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BOUNDARY CURVE A P, =001
B Pn=0.02
Lg FC C Pip=005
D Pp=010
00— y
095 100 105 26,

Fig. 2. Normalized voltage versus frequency for different input
powers. The coupling circuit has L=0.1 and C=10.0. Further-
more, G,=10, Yg= —2.0+G;V?(C:=0). Pi, is the injected
power normalized by the free-running output power, Po = (G. V) /2.

locked oscillator (at small injected powers) (25) gives
the maximum locking range (w;—wo)max fOr a certain
injected power. Replacing I and V, by input power Pi,
and free-running output power P, we get

i = 1 Pin
@i T @l 4/ i (26)
Wo max Qext Po
where
’ oG 4B dB oG
wo oV dw AV dw
Qexe = 26G, aG\* [0B\
V) + ()
14 aV
wo 0B )2 <6G )2
= S _— -—]. 27
2G. I | I‘/< dw + dw @7

This result should be compared with Adler’s [3]. Equa-
tion (26) has the same form as Adler’s but the “normal”
Qoxt = (w0/2G¢) (9B /3w) = (wo/G.) has to be replaced by
(27). Equation (19) in [1] can be cast in the same form
as (26) and (27).

Although we have discussed a phase-locked oscillator,
the derived stability criteria are of course also applicable
to a negative conductance amplifier. We should remem-
ber, however, that the boundary curve, defined by (19),
is accurate only as long as (12) can be used.

IV. EXAMPLE

The theory has been applied to a simple cubic non-
linearity provided with different coupling circuits [4].
By using the stability criteria a number of experi-
mentally found phenomena could be explained, e.g.,
hysteresis and jumps in output power and unsym-
metrical locking ranges [4]. As an example we will
study a parallel tuned circuit. The active element is

described by the following admittance
Yd = Gg + G2V2 +jO)C0 +ij2V2. (28)

Fig. 2 shows V?2/T,? versus w/w, for different input
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Fig. 3. (a) Locus and boundary curves. (b) Locking bandwidth
versus locking gain. (c) Modulation frequency versus frequency
on the locus and boundary curves. G,=1.0, L=0.1, Go= —

A: By/G2=0 and C=10.0; B: Bg/Gz—-lO and C= 90 C: Bg/Gz
=25and C=1.5.

powers. V, and w, are given by (6) and (7). The
parameter values chosen are shown in the figure cap-
tions. The region of stable locking as calculated from the
stability criteria is shown.

Py, is the injected power normalized by the free-
running output power P, = (G.V,?) /2, and since we have
plotted V2/V % the value of G, is arbitrary and incor-
porated in V2

In Fig. 3(a) locus and boundary curves are shown for
an active element with the same coupling circuit as in
Fig. 2, but with different values of the voltage-de-
pendent capacitance. The circuit is tuned to give a
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Fig. 4. Experimental values of modulation frequency versus fre-
quency on the border of the stable region. fo=9975 MHaz.

constant w,. The slope of the locus curve at wo is given
by (24). The slope has a maximum for B;=G.. Fig.
3(a) shows that unsymmetrical locking properties are
obtained due to the voltage-dependent susceptance.
This is also shown in Fig. 3(b), which is the common
locking bandwidth versus gain diagram. The dashed
lines are given by (26) with Qe computed from (27).
This expression is, however, only valid at small Pi,
(large P,/Pi.). At larger P, the asymmetry of the
locus curve makes the locking bandwidth larger for
positive frequency deviations (in this example).

By actually calculating the roots of s from the de-
terminental equation on the border of the stable region
some information may be gained concerning the type of
instability which is the most important at different
parts of the border. Close to locking the output is a
carrier with amplitude and phase modulation. In Fig.
3(c) the modulation frequency Aw, is shown. The
modulation frequency Aw, is the difference between
the frequency of the injected signal w; and the fre-
quency of the oscillator at the border of stable locking.

On the locus curve the modulation frequency is zero
and on the boundary curve the modulation frequency
goes toward the frequency difference w;—w,. This
means that when the stable locking range is determined
by the locus curve we have complete frequency pulling,
i.e., Aw,=0. When the stable locking region is de-
termined by the boundary curve, the frequency of the
oscillator is only partly pulled (or in some cases pushed
from) the injected signal at the border of locking. For
injected signals far away from the free-running fre-
quency w, we have neither frequency pushing nor pull-
ing, which means that the modulation frequency Aw,
equals w; —wo.

This is in good agreement qualitatively with experi-
ments done on an impaTT-diode oscillator with fo=9975
MHz and P,=60 mW and also with conclusions made
using a different method of analyzing nonlinear micro-
wave circuits [6].

The experimental results are shown in Fig. 4. The
crosses in Fig. 4 represent the limit of the modulation
frequency obtained at a certain injected frequency,
just at the border of locking. They were obtained by
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choosing a frequency f; and increasing P; until locking
occurred. Points lying on the f; axis represent the
modulation frequency obtained when the locking range
is determined by the locus curve. The other points rep-
resent the modulation frequency limit when the locking
range is determined by the boundary curve. For some
injected frequencies (f: <fo) there are two crosses at the
same frequency. The reason for this may be seen in
Fig. 3(a). We look at case B with w:/w¢=0.95 as an
example. Increasing the input power from zerc we find
that locking occurs at the boundary curve and hence
gives a cross close to f;—f in Fig. 4. If the input power
increased further (which for a stable locked state also
means increasing the voltage amplitude 1) we reach
the locus curve B and a jump in V (and output power)
occurs. The modulation frequency just before the jump
is then zero. Furthermore, this example shows the possi-
bility of hysteresis and jumps in the output power of a
locked oscillator.

V. CONCLUSIONS

Some general stability criteria have been derived
that seem to be useful in connection with practical
amplifiers and oscillators. The results obtained are in
good agreement qualitatively with experimental results.
Furthermore, a new locking figure of merit 1/Quxt was
derived for small injected powers. It is seen from this
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figure of merit, (27), that introducing a voltage-de-
pendent capacitance may increase the locking band-
width. However, this also decreases the dynamic
stability of the oscillator. To increase the locking band-
width without decreasing the dynamic stability one has
to decrease the absolute value of the frequency deriva-
tive of the admittance. Furthermore, the modulation
of the oscillator at the border to phase locking was
studied. The difference between locking at the boundary
and locus curve, respectively, was pointed out. The effect
of large injected power was shown to create unsym-
metric locking properties if a nonlinear susceptance is
present in the circuit.
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A Wide-Band Gunn-Effect CW W aveguide Amplifier

AMADOU SENE axp FRED J. ROSENBAUM

Abstract—Broad-band CW amplification with Gunn diodes in
waveguide circuits has been obtained, with power gains typically
between 10 and 15 dB and half-power bandwidths of more than 1
GHz. It is found that amplifier performance can be modeled with
fair accuracy using a rough characterization for the diode parameters.

INTRODUCTION

LTHOUGH Gunn diodes have been used primarily

in oscillator applications, theirnegativeresistance
properties can also be used to obtain reflection

gain [1]-[8]. Three amplifying modes have been ob-
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served that depend on the product of doping density =z
and the length L of the GaAs chip.

McCumber and Chynoweth [9] have shown the-
oretically that when the #L product is less than 5 X 10!
cm™? a Gunn diode exhibits a negative resistance
around the transit-time frequency and its harmonics
[1]. Such diodes are usually referred to as being sub-
critically doped, since when biased above threshold they
do not enter into transit-time (Gunn) oscillations. The
main disadvantage of subcritically doped amplifiers is
the high ratio of capacitance-to-negative conductance
that allows circuit matching for high gain only in a
narrow frequency band.

When the nL product is above 5X10' cm~? the
device is supercritically doped. If the bias voltage is
just above threshold, high field domains nucleate near
the cathode boundary and the diode may oscillate in the



